//PROYECTO MAESTRO - VERSIÓN CON REGISTRO DE DESPLAZAMIENTO 74HC595
// VERSIÓN AJUSTADA: Vúmetro con barras más anchas y marcadores de referencia.
// --- LIBRERÍAS COMUNES ---
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include <ESP32Encoder.h>
#include <math.h>
// --- CONFIGURACIÓN DE PANTALLA OLED (I2C) ---
#define SCREEN_WIDTH 128
#define SCREEN_HEIGHT 64
#define OLED_RESET -1
#define SCREEN_ADDRESS 0x3C
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);
// --- CONFIGURACIÓN DE ENCODERS ---
#define VOL_CLK_PIN 12
#define VOL_DT_PIN 13
#define GAIN_CLK_PIN 17 //TX2
#define GAIN_DT_PIN 16 //RX2
#define HIGH_CLK_PIN 34
#define HIGH_DT_PIN 35
#define MID_HIGH_CLK_PIN 32
#define MID_HIGH_DT_PIN 33
#define MID_LOW_CLK_PIN 25
#define MID_LOW_DT_PIN 26
#define LOW_CLK_PIN 27
#define LOW_DT_PIN 14
// Pines VSPI: MOSI=23, SCK=18, (MISO=19 Este pin: MISO, no es usado por el MCP4231/503)
// --- CONFIGURACIÓN DEL REGISTRO DE DESPLAZAMIENTO 74HC595 PARA LOS PINES CS ---
#define SHIFT_REG_DATA_PIN 19 // Conectado al pin 14 (DS) del 74HC595
#define SHIFT_REG_LATCH_PIN 4 // Conectado al pin 12 (STCP) del 74HC595
#define SHIFT_REG_CLOCK_PIN 15 // Conectado al pin 11 (SHCP) del 74HC595
// Mapeo de cada potenciómetro a una salida (bit) del 74HC595
const int VOL_CS_BIT = 0; // Q0
const int GAIN_CS_BIT = 1; // Q1
const int HIGH_CS_BIT = 2; // Q2
const int MID_HIGH_CS_BIT = 3; // Q3
const int MID_LOW_CS_BIT = 4; // Q4
const int LOW_CS_BIT = 5; // Q5
// --- CONFIGURACIÓN DEL VÚMETRO ---
#define VOLTAGE_IN_L 36 // Canal Izquierdo (ADC1_CH0)
#define VOLTAGE_IN_R 39 // Canal Derecho (ADC1_CH3)
#define SAMPLES_AVG 64
#define ADC_MAX_VALUE 4095
#define ADC_REF_0DB 1106.0 // Valor ADC que corresponde a 0dB
#define DB_MIN -30.0
#define DB_MAX 11.4
#define PEAK_HOLD_MS 1500
#define PEAK_DECAY_RATE 0.35
// --- PARÁMETROS DE FUNCIONAMIENTO ---
#define DISPLAY_TIMEOUT_MS 3000 // 3 segundos para volver al vúmetro
const int POT_MAX_STEPS = 255;
#define ENCODER_STEPS_PER_DB 2
// Rangos de Decibelios (dB) para los controles
const int VOL_MIN = -80, VOL_MAX = 10;
const int GAIN_MIN = -20, GAIN_MAX = 20;
const int EQ_MIN = -15, EQ_MAX = 15;
// --- OBJETOS GLOBALES ---
ESP32Encoder encoderVol;
ESP32Encoder encoderGain;
ESP32Encoder encoderHigh;
ESP32Encoder encoderMidHigh;
ESP32Encoder encoderMidLow;
ESP32Encoder encoderLow;
// --- VARIABLES DE ESTADO GLOBALES ---
// Para los controles
int currentVolDB = 0;
int currentGainDB = 0;
int currentHighDB = 0;
int currentMidHighDB = 0;
int currentMidLowDB = 0;
int currentLowDB = 0;
// Para el vúmetro
double peakL = DB_MIN;
double peakR = DB_MIN;
unsigned long lastPeakTimeL = 0;
unsigned long lastPeakTimeR = 0;
// Para la gestión de la pantalla
enum DisplayMode { MODE_VUMETER, MODE_PARAM };
DisplayMode currentMode = MODE_VUMETER;
unsigned long lastInteractionTime = 0;
// Variable para el estado del registro de desplazamiento
byte shiftRegisterState = 0b11111111; // Inicia con todos los CS en HIGH (inactivos)
// --- PROTOTIPOS DE FUNCIONES ---
void updateShiftRegister();
void writeToPot(int csBit, byte address, byte value);
void setPotValue(int csBit, int dbValue, int dbMin, int dbMax);
void actualizarPantallaParametro(const char *paramName, int currentValue, int minValue, int maxValue);
void drawVUMeterBar(int x_start, int y_start, double dbValue, double peakDbValue);
void actualizarVUMeter();
// =====================================================================================
// === SETUP ===
// =====================================================================================
void setup() {
//Serial.begin(115200);
// --- Inicialización de Buses ---
SPI.begin();
Wire.begin();
// --- Inicialización de Pines del Registro de Desplazamiento ---
pinMode(SHIFT_REG_DATA_PIN, OUTPUT);
pinMode(SHIFT_REG_LATCH_PIN, OUTPUT);
pinMode(SHIFT_REG_CLOCK_PIN, OUTPUT);
// Asegurarse de que todos los CS estén desactivados (HIGH) al iniciar
shiftRegisterState = 0xFF; // 0b11111111
updateShiftRegister();
// --- Inicialización de Encoders ---
encoderVol.attachHalfQuad(VOL_DT_PIN, VOL_CLK_PIN);
encoderVol.setCount(VOL_MIN * ENCODER_STEPS_PER_DB);
currentVolDB = VOL_MIN;
encoderGain.attachHalfQuad(GAIN_DT_PIN, GAIN_CLK_PIN);
encoderGain.setCount(0 * ENCODER_STEPS_PER_DB);
encoderHigh.attachHalfQuad(HIGH_DT_PIN, HIGH_CLK_PIN);
encoderHigh.setCount(0 * ENCODER_STEPS_PER_DB);
encoderMidHigh.attachHalfQuad(MID_HIGH_DT_PIN, MID_HIGH_CLK_PIN);
encoderMidHigh.setCount(0 * ENCODER_STEPS_PER_DB);
encoderMidLow.attachHalfQuad(MID_LOW_DT_PIN, MID_LOW_CLK_PIN);
encoderMidLow.setCount(0 * ENCODER_STEPS_PER_DB);
encoderLow.attachHalfQuad(LOW_DT_PIN, LOW_CLK_PIN);
encoderLow.setCount(0 * ENCODER_STEPS_PER_DB);
// --- Configurar estado inicial de los potenciómetros usando los bits del 74HC595 ---
setPotValue(VOL_CS_BIT, currentVolDB, VOL_MIN, VOL_MAX);
setPotValue(GAIN_CS_BIT, currentGainDB, GAIN_MIN, GAIN_MAX);
setPotValue(HIGH_CS_BIT, currentHighDB, EQ_MIN, EQ_MAX);
setPotValue(MID_HIGH_CS_BIT, currentMidHighDB, EQ_MIN, EQ_MAX);
setPotValue(MID_LOW_CS_BIT, currentMidLowDB, EQ_MIN, EQ_MAX);
setPotValue(LOW_CS_BIT, currentLowDB, EQ_MIN, EQ_MAX);
// --- Inicialización de la pantalla OLED ---
display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS);
display.clearDisplay();
display.setTextSize(2);
display.setTextColor(SSD1306_WHITE);
display.setCursor(15, 24);
display.println("PATRO DJ");
display.display();
delay(1500);
// Iniciar temporizador para la gestión de pantalla
lastInteractionTime = millis();
currentMode = MODE_VUMETER;
}
// =====================================================================================
// === MAIN LOOP ===
// =====================================================================================
void loop() {
bool interaction = false;
// --- 1. LEER ENCODERS Y ACTUALIZAR PARÁMETROS ---
long newVol = encoderVol.getCount() / ENCODER_STEPS_PER_DB;
if (newVol > VOL_MAX) { newVol = VOL_MAX; encoderVol.setCount(newVol * ENCODER_STEPS_PER_DB); }
if (newVol < VOL_MIN) { newVol = VOL_MIN; encoderVol.setCount(newVol * ENCODER_STEPS_PER_DB); }
if (newVol != currentVolDB) {
currentVolDB = newVol;
actualizarPantallaParametro("VOLUMEN", currentVolDB, VOL_MIN, VOL_MAX);
setPotValue(VOL_CS_BIT, currentVolDB, VOL_MIN, VOL_MAX);
interaction = true;
}
long newGain = encoderGain.getCount() / ENCODER_STEPS_PER_DB;
if (newGain > GAIN_MAX) { newGain = GAIN_MAX; encoderGain.setCount(newGain * ENCODER_STEPS_PER_DB); }
if (newGain < GAIN_MIN) { newGain = GAIN_MIN; encoderGain.setCount(newGain * ENCODER_STEPS_PER_DB); }
if (newGain != currentGainDB) {
currentGainDB = newGain;
actualizarPantallaParametro("GAIN", currentGainDB, GAIN_MIN, GAIN_MAX);
setPotValue(GAIN_CS_BIT, currentGainDB, GAIN_MIN, GAIN_MAX);
interaction = true;
}
long newHigh = encoderHigh.getCount() / ENCODER_STEPS_PER_DB;
if (newHigh > EQ_MAX) { newHigh = EQ_MAX; encoderHigh.setCount(newHigh * ENCODER_STEPS_PER_DB); }
if (newHigh < EQ_MIN) { newHigh = EQ_MIN; encoderHigh.setCount(newHigh * ENCODER_STEPS_PER_DB); }
if (newHigh != currentHighDB) {
currentHighDB = newHigh;
actualizarPantallaParametro("HIGH", currentHighDB, EQ_MIN, EQ_MAX);
setPotValue(HIGH_CS_BIT, currentHighDB, EQ_MIN, EQ_MAX);
interaction = true;
}
long newMidHigh = encoderMidHigh.getCount() / ENCODER_STEPS_PER_DB;
if (newMidHigh > EQ_MAX) { newMidHigh = EQ_MAX; encoderMidHigh.setCount(newMidHigh * ENCODER_STEPS_PER_DB); }
if (newMidHigh < EQ_MIN) { newMidHigh = EQ_MIN; encoderMidHigh.setCount(newMidHigh * ENCODER_STEPS_PER_DB); }
if (newMidHigh != currentMidHighDB) {
currentMidHighDB = newMidHigh;
actualizarPantallaParametro("MID HIGH", currentMidHighDB, EQ_MIN, EQ_MAX);
setPotValue(MID_HIGH_CS_BIT, currentMidHighDB, EQ_MIN, EQ_MAX);
interaction = true;
}
long newMidLow = encoderMidLow.getCount() / ENCODER_STEPS_PER_DB;
if (newMidLow > EQ_MAX) { newMidLow = EQ_MAX; encoderMidLow.setCount(newMidLow * ENCODER_STEPS_PER_DB); }
if (newMidLow < EQ_MIN) { newMidLow = EQ_MIN; encoderMidLow.setCount(newMidLow * ENCODER_STEPS_PER_DB); }
if (newMidLow != currentMidLowDB) {
currentMidLowDB = newMidLow;
actualizarPantallaParametro("MID LOW", currentMidLowDB, EQ_MIN, EQ_MAX);
setPotValue(MID_LOW_CS_BIT, currentMidLowDB, EQ_MIN, EQ_MAX);
interaction = true;
}
long newLow = encoderLow.getCount() / ENCODER_STEPS_PER_DB;
if (newLow > EQ_MAX) { newLow = EQ_MAX; encoderLow.setCount(newLow * ENCODER_STEPS_PER_DB); }
if (newLow < EQ_MIN) { newLow = EQ_MIN; encoderLow.setCount(newLow * ENCODER_STEPS_PER_DB); }
if (newLow != currentLowDB) {
currentLowDB = newLow;
actualizarPantallaParametro("LOW", currentLowDB, EQ_MIN, EQ_MAX);
setPotValue(LOW_CS_BIT, currentLowDB, EQ_MIN, EQ_MAX);
interaction = true;
}
// --- 2. GESTIONAR EL MODO DE LA PANTALLA ---
if (interaction) {
lastInteractionTime = millis();
currentMode = MODE_PARAM;
} else {
if (currentMode == MODE_PARAM && (millis() - lastInteractionTime > DISPLAY_TIMEOUT_MS)) {
currentMode = MODE_VUMETER;
}
}
// --- 3. DIBUJAR EN PANTALLA SEGÚN EL MODO ---
if (currentMode == MODE_VUMETER) {
actualizarVUMeter();
delay(50);
} else {
delay(20);
}
}
// =====================================================================================
// === FUNCIONES DE LA CONTROLADORA ===
// =====================================================================================
void updateShiftRegister() {
digitalWrite(SHIFT_REG_LATCH_PIN, LOW);
shiftOut(SHIFT_REG_DATA_PIN, SHIFT_REG_CLOCK_PIN, MSBFIRST, shiftRegisterState);
digitalWrite(SHIFT_REG_LATCH_PIN, HIGH);
}
void writeToPot(int csBit, byte address, byte value) {
SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0));
bitClear(shiftRegisterState, csBit);
updateShiftRegister();
SPI.transfer(address);
SPI.transfer(value);
shiftRegisterState = 0xFF;
updateShiftRegister();
SPI.endTransaction();
}
void setPotValue(int csBit, int dbValue, int dbMin, int dbMax) {
long potStep = map(dbValue, dbMin, dbMax, POT_MAX_STEPS, 0);
potStep = constrain(potStep, 0, POT_MAX_STEPS);
writeToPot(csBit, 0x00, (byte)potStep);
writeToPot(csBit, 0x10, (byte)potStep);
}
void actualizarPantallaParametro(const char *paramName, int currentValue, int minValue, int maxValue) {
display.clearDisplay();
display.setTextSize(2);
display.setTextColor(SSD1306_WHITE);
int16_t x1, y1;
uint16_t w, h;
display.getTextBounds(paramName, 0, 0, &x1, &y1, &w, &h);
display.setCursor((SCREEN_WIDTH - w) / 2, 2);
display.println(paramName);
char dbStr[10];
sprintf(dbStr, "%+d dB", currentValue);
display.getTextBounds(dbStr, 0, 0, &x1, &y1, &w, &h);
display.setCursor((SCREEN_WIDTH - w) / 2, 20);
display.print(dbStr);
int barWidth = map(currentValue, minValue, maxValue, 0, SCREEN_WIDTH);
display.drawRect(0, 42, SCREEN_WIDTH, 16, SSD1306_WHITE);
if (minValue < 0 && maxValue > 0) {
int zeroPoint = map(0, minValue, maxValue, 0, SCREEN_WIDTH);
display.drawFastVLine(zeroPoint, 40, 20, SSD1306_WHITE);
if (barWidth > zeroPoint) {
display.fillRect(zeroPoint, 42, barWidth - zeroPoint, 16, SSD1306_WHITE);
} else {
display.fillRect(barWidth, 42, zeroPoint - barWidth, 16, SSD1306_WHITE);
}
} else {
display.fillRect(0, 42, barWidth, 16, SSD1306_WHITE);
}
display.display();
}
// =====================================================================================
// === FUNCIONES DEL VÚMETRO ===
// =====================================================================================
void drawVUMeterBar(int x_start, int y_start, double dbValue, double peakDbValue) {
#define BAR_LENGTH 110 // <-- MODIFICADO: Ancho de la barra aumentado de 100 a 110
#define BAR_HEIGHT 20
#define SEGMENT_WIDTH 3
#define SEGMENT_SPACING 1
int totalSegments = BAR_LENGTH / (SEGMENT_WIDTH + SEGMENT_SPACING);
display.drawRect(x_start - 1, y_start - 1, BAR_LENGTH + 2, BAR_HEIGHT + 2, SSD1306_WHITE);
int activeSegments = map(dbValue, DB_MIN, DB_MAX, 0, totalSegments);
activeSegments = constrain(activeSegments, 0, totalSegments);
for (int i = 0; i < activeSegments; i++) {
int xPos = x_start + (i * (SEGMENT_WIDTH + SEGMENT_SPACING));
display.fillRect(xPos, y_start, SEGMENT_WIDTH, BAR_HEIGHT, SSD1306_WHITE);
}
int peakSegment = map(peakDbValue, DB_MIN, DB_MAX, 0, totalSegments);
peakSegment = constrain(peakSegment, 0, totalSegments);
int peakXPos = x_start + (peakSegment * (SEGMENT_WIDTH + SEGMENT_SPACING));
if (peakXPos < x_start + BAR_LENGTH) {
display.fillRect(peakXPos, y_start, SEGMENT_WIDTH, BAR_HEIGHT, SSD1306_WHITE);
}
}
void actualizarVUMeter() {
// --- Cálculo de dB (sin cambios) ---
unsigned long totalL = 0;
unsigned long totalR = 0;
for (int i = 0; i < SAMPLES_AVG; i++) {
totalL += analogRead(VOLTAGE_IN_L);
totalR += analogRead(VOLTAGE_IN_R);
}
double dbL = (totalL == 0) ? DB_MIN : 20 * log10((double)(totalL / SAMPLES_AVG) / ADC_REF_0DB);
double dbR = (totalR == 0) ? DB_MIN : 20 * log10((double)(totalR / SAMPLES_AVG) / ADC_REF_0DB);
// --- Lógica de Peak Hold (sin cambios) ---
unsigned long currentTime = millis();
if (dbL >= peakL) {
peakL = dbL;
lastPeakTimeL = currentTime;
} else if (currentTime - lastPeakTimeL > PEAK_HOLD_MS) {
peakL -= PEAK_DECAY_RATE;
if (peakL < dbL) peakL = dbL;
if (peakL < DB_MIN) peakL = DB_MIN;
}
if (dbR >= peakR) {
peakR = dbR;
lastPeakTimeR = currentTime;
} else if (currentTime - lastPeakTimeR > PEAK_HOLD_MS) {
peakR -= PEAK_DECAY_RATE;
if (peakR < dbR) peakR = dbR;
if (peakR < DB_MIN) peakR = DB_MIN;
}
// --- DIBUJO EN PANTALLA (SECCIÓN MODIFICADA) ---
display.clearDisplay();
int label_x = 2; // <-- MODIFICADO: Etiqueta movida a la izquierda
int bar_x_start = 12; // <-- MODIFICADO: Barra movida a la izquierda
display.setTextSize(1);
display.setTextColor(SSD1306_WHITE);
// Dibuja la barra L y su etiqueta
drawVUMeterBar(bar_x_start, 4, dbL, peakL);
display.setCursor(label_x, 12);
display.print("L");
// Dibuja la barra R y su etiqueta
drawVUMeterBar(bar_x_start, 39, dbR, peakR);
display.setCursor(label_x, 47);
display.print("R");
// Dibuja los marcadores de referencia de dB entre las barras
const int MARKER_Y_START = 24;
const int MARKER_HEIGHT = 14;
const double BAR_LENGTH_D = 110.0; // <-- MODIFICADO: Debe coincidir con BAR_LENGTH
// Calcula la posición X para cada marcador usando una proporción matemática
int x_marker_neg30 = bar_x_start + (int)((( -30.0 - DB_MIN) / (DB_MAX - DB_MIN)) * BAR_LENGTH_D);
int x_marker_0 = bar_x_start + (int)((( 0.0 - DB_MIN) / (DB_MAX - DB_MIN)) * BAR_LENGTH_D);
int x_marker_10 = bar_x_start + (int)((( 10.0 - DB_MIN) / (DB_MAX - DB_MIN)) * BAR_LENGTH_D);
// Dibuja las tres líneas verticales
display.drawFastVLine(x_marker_neg30, MARKER_Y_START, MARKER_HEIGHT, SSD1306_WHITE);
display.drawFastVLine(x_marker_0, MARKER_Y_START, MARKER_HEIGHT, SSD1306_WHITE);
display.drawFastVLine(x_marker_10, MARKER_Y_START, MARKER_HEIGHT, SSD1306_WHITE);
display.setCursor(15, 28);
display.print("-30dB 0dB 10dB");
// Muestra todo en la pantalla
display.display();
}