// STM32 Nucleo-L031K6 HAL Blink + printf() example
// Simulation: https://wokwi.com/projects/367244067477216257
// TODO: Have three LEDs (RGB) and have a way to turn on one of 8 color combinations
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stm32l0xx_hal.h>
// ST Nucleo Green user LED (PB3)
#define LED_PORT GPIOB
#define LED_PIN_1 GPIO_PIN_1
#define LED_PIN_2 GPIO_PIN_5
#define LED_PIN_3 GPIO_PIN_4
#define LED_PORT_CLK_ENABLE __HAL_RCC_GPIOB_CLK_ENABLE
#define VCP_TX_Pin GPIO_PIN_2
#define VCP_RX_Pin GPIO_PIN_15
UART_HandleTypeDef huart2;
TIM_HandleTypeDef htim2;
void SystemClock_Config(void);
static void MX_USART2_UART_Init(void);
void initGPIO()
{
GPIO_InitTypeDef GPIO_Config;
GPIO_Config.Mode = GPIO_MODE_AF_PP;
GPIO_Config.Pull = GPIO_NOPULL;
GPIO_Config.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_Config.Alternate = GPIO_AF2_TIM2;
LED_PORT_CLK_ENABLE();
GPIO_Config.Pin = LED_PIN_1;
GPIO_Config.Pin = LED_PIN_2;
GPIO_Config.Pin = LED_PIN_3;
HAL_GPIO_Init(LED_PORT, &GPIO_Config);
}
volatile uint32_t color = 0;
volatile uint32_t redBrightness = 0;
volatile uint32_t greenBrightness = 0;
volatile uint32_t blueBrightness = 0;
volatile uint8_t usePWM = 0;
void nextColor()
{
usePWM = 0;
color++;
WriteToPins();
if (color == 7) color = -1;
}
void changeColor(uint32_t newColor)
{
color = newColor;
WriteToPins();
if (color == 7) color = 0;
}
void changeColorHEX(
uint8_t newRedBrightness, uint8_t newGreenBrightness, uint8_t newBlueBrightness)
{
/*
color = ((newRedBrightness > 0) << 2)
| ((newGreenBrightness > 0) << 1)
| (newBlueBrightness > 0); */
redBrightness = newRedBrightness;
greenBrightness = newGreenBrightness;
blueBrightness = newBlueBrightness;
}
void WriteToPins()
{
HAL_GPIO_WritePin(LED_PORT, LED_PIN_1, color & 4 ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED_PORT, LED_PIN_2, color & 2 ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED_PORT, LED_PIN_3, color & 1 ? GPIO_PIN_SET : GPIO_PIN_RESET);
}
void runPWM()
{
for (uint8_t dutyCycle = 0; dutyCycle < 255; dutyCycle++)
{
color = ((redBrightness > dutyCycle) << 2) |
((greenBrightness > dutyCycle) << 1) |
(blueBrightness > dutyCycle);
WriteToPins();
delay(0.1);
}
}
static void MX_TIM2_Init(void)
{
TIM_OC_InitTypeDef sConfigOC = {0};
__HAL_RCC_TIM2_CLK_ENABLE();
htim2.Instance = TIM2;
htim2.Init.Prescaler = (uint32_t)(SystemCoreClock / 1000000) - 1;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 255;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
}
void setup()
{
HAL_Init();
SystemClock_Config();
initGPIO();
MX_USART2_UART_Init();
pinMode(2, INPUT_PULLUP);
//noInterrupts();
attachInterrupt(digitalPinToInterrupt(2), nextColor, RISING);
Serial.begin(9600);
Serial.println("Enter R, G or B to toggle LEDs. Enter color name to change color.");
}
void loop()
{
if (Serial.available() > 0)
{
String input = Serial.readStringUntil('\n');
input.trim();
input.toUpperCase();
usePWM = false;
if (input == "R")
{
changeColor(color^4);
}
else if (input == "G")
{
changeColor(color^2);
}
else if (input == "B")
{
changeColor(color^1);
}
else if (input == "BLUE")
{
changeColor(1);
}
else if (input == "GREEN")
{
changeColor(2);
}
else if (input == "CYAN")
{
changeColor(3);
}
else if (input == "RED")
{
changeColor(4);
}
else if (input == "MAGENTA")
{
changeColor(5);
}
else if (input == "YELLOW")
{
changeColor(6);
}
else if (input == "WHITE")
{
changeColor(7);
}
else if (input == "BLACK")
{
changeColor(8);
}
else
{
if (input.charAt(0) == '#')
{
input.remove(0, 1);
}
if (input.length() == 6)
{
uint32_t value = strtol(input.c_str(), NULL, 16);
uint32_t inputRedBrightness = (value >> 16) & 0xFF;
uint32_t inputGreenBrightness = (value >> 8) & 0xFF;
uint32_t inputBlueBrightness = value & 0xFF;
Serial.print("Red brightness: ");
Serial.println(inputRedBrightness);
Serial.print("Green brightness: ");
Serial.println(inputGreenBrightness);
Serial.print("Blue brightness: ");
Serial.println(inputBlueBrightness);
changeColorHEX(inputRedBrightness, inputGreenBrightness, inputBlueBrightness);
usePWM = true;
}
else
{
Serial.println("Invalid input");
}
}
}
if (usePWM)
{
runPWM();
}
else
{
delay(1000);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_4;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2;
PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
@brief USART2 Initialization Function
@param None
@retval None
*/
static void MX_USART2_UART_Init(void)
{
__HAL_RCC_GPIOA_CLK_ENABLE();
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA15 ------> USART2_RX
*/
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = VCP_TX_Pin | VCP_RX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_USART2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
__HAL_RCC_USART2_CLK_ENABLE();
}
// The following makes printf() write to USART2:
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
int _write(int file, uint8_t *ptr, int len)
{
switch (file)
{
case STDOUT_FILENO:
HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
break;
case STDERR_FILENO:
HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
break;
default:
return -1;
}
return len;
}